53 research outputs found

    Energy Gaps in a Spacetime Crystal

    Full text link
    This paper presents an analysis of the band structure of a spacetime potential lattice created by a standing electromagnetic wave. We show that there are energy band gaps. We estimate the effect, and propose a measurement that could confirm the existence of such phenomena.Comment: 8 pages. 2 figure

    Equilibrium Relativistic Mass Distribution

    Full text link
    The relativistic Maxwell-Boltzmann distribution for the system of NN events with motion in space-time parametrized by an invariant ``historical time'' τ\tau is considered without the simplifying approximation m2M2m^2\cong M^2, where MM is a given intrinsic property of the events. The relativistic mass distribution is obtained and the average values of mm and m2m^2 are calculated. The average value of the energy in nonrelativistic limit gives a correction of the order of 10\% to the Dulong-Petit law. Expressions for the pressure and the density of events are obtained and the ideal gas law is recovered.Comment: TAUP-2048-9

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by μm2M/μK,\mu \leq m\leq 2M/\mu _K, where μ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and μK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential μ,\mu , the mass spectrum is shown to be bounded by μm2M/μK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/μK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    Stark Effect in Lax-Phillips Theory

    Full text link
    The scattering theory of Lax and Phillips, originally developed to describe resonances associated with classical wave equations, has been recently extended to apply as well to the case of the Schroedinger equation in the case that the wave operators for the corresponding Lax-Phillips theory exist. It is known that the bound state levels of an atom become resonances (spectral enhancements) in the continuum in the presence of an electric field (in all space) in the quantum mechanical Hilbert space. Such resonances appear as states in the extended Lax-Phillips Hilbert space. We show that for a simple version of the Stark effect, these states can be explicitly computed, and exhibit the (necessarily) semigroup property of decay in time. The widths and location of the resonances are those given by the poles of the resolvent of the standard quantum mechanical form.Comment: Plain TeX, 19 page

    Discrete Symmetries of Off-Shell Electromagnetism

    Full text link
    We discuss the discrete symmetries of the Stueckelberg-Schrodinger relativistic quantum theory and its associated 5D local gauge theory, a dynamical description of particle/antiparticle interactions, with monotonically increasing Poincare-invariant parameter. In this framework, worldlines are traced out through the parameterized evolution of spacetime events, advancing or retreating with respect to the laboratory clock, with negative energy trajectories appearing as antiparticles when the observer describes the evolution using the laboratory clock. The associated gauge theory describes local interactions between events (correlated by the invariant parameter) mediated by five off-shell gauge fields. These gauge fields are shown to transform tensorially under under space and time reflections, unlike the standard Maxwell fields, and the interacting quantum theory therefore remains manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory is achieved by simultaneous reflection of the sense of evolution and the fifth scalar field. Applying this procedure to the classical gauge theory leads to a purely classical manifestation of charge conjugation, placing the CPT symmetries on the same footing in the classical and quantum domains. In the resulting picture, interactions do not distinguish between particle and antiparticle trajectories -- charge conjugation merely describes the interpretation of observed negative energy trajectories according to the laboratory clock.Comment: 26 page

    On the Thermodynamics of Hot Hadronic Matter

    Get PDF
    The equation of state of hot hadronic matter is obtained, by taking into account the contribution of the massive states with the help of the resonance spectrum τ(m)m3\tau (m)\sim m^3 justified by the authors in previous papers. This equation of state is in agreement with that provided by the low-temperature expansion for the pion intracting gas. It is shown that in this picture the deconfinement phase transition is absent, in agreement with lattice gauge calculations which show the only phase transition of chiral symmetry restoration. The latter is modelled with the help of the restriction of the number of the effective degrees of freedom in the hadron phase to that of the microscopic degrees of freedom in the quark-gluon phase, through the corresponding truncation of the hadronic resonance spectrum, and the decrease of the effective hadron masses with temperature, predicted by Brown and Rho. The results are in agreement with lattice gauge data and show a smooth crossover in the thermodynamic variables in a temperature range 50\sim 50 MeV.Comment: 21 pages, LaTeX, 3 postscript figure

    Common Space of Spin and Spacetime

    Full text link
    Given Lorentz invariance in Minkowski spacetime, we investigate a common space of spin and spacetime. To obtain a finite spinor representation of the non-compact homogeneous Lorentz group including Lorentz boosts, we introduce an indefinite inner product space (IIPS) with a normalized positive probability. In this IIPS, the common momentum and common variable of a massive fermion turn out to be ``doubly strict plus-operators''. Due to this nice property, it is straightforward to show an uncertainty relation between fermion mass and proper time. Also in IIPS, the newly-defined Lagrangian operators are self-adjoint, and the fermion field equations are derivable from the Lagrangians. Finally, the nonlinear QED equations and Lagrangians are presented as an example.Comment: 17 pages, a reference corrected, final version published on Foundations of Physics Letters in June of 2005, as a personal tribute to Einstein and Dira

    Finding Shuffle Words That Represent Optimal Scheduling of Shared Memory Access

    Get PDF
    In the present paper, we introduce and study the problem of computing, for any given finite set of words, a shuffle word with a minimum so-called scope coincidence degree. The scope coincidence degree is the maximum number of different symbols that parenthesise any position in the shuffle word. This problem is motivated by an application of a new automaton model and can be regarded as the problem of scheduling shared memory accesses of some parallel processes in a way that minimises the number of memory cells required. We investigate the complexity of this problem and show that it can be solved in polynomial time

    Glimpses of the Octonions and Quaternions History and Todays Applications in Quantum Physics

    Full text link
    Before we dive into the accessibility stream of nowadays indicatory applications of octonions to computer and other sciences and to quantum physics let us focus for a while on the crucially relevant events for todays revival on interest to nonassociativity. Our reflections keep wandering back to the BrahmaguptaBrahmagupta FibonaccFibonacc two square identity and then via the EulerEuler four square identity up to the DegenDegen GgravesGgraves CayleyCayley eight square identity. These glimpses of history incline and invite us to retell the story on how about one month after quaternions have been carved on the BroughamianBroughamian bridge octonions were discovered by JohnJohn ThomasThomas GgravesGgraves, jurist and mathematician, a friend of WilliamWilliam RowanRowan HamiltonHamilton. As for today we just mention en passant quaternionic and octonionic quantum mechanics, generalization of CauchyCauchy RiemannRiemann equations for octonions and triality principle and G2G_2 group in spinor language in a descriptive way in order not to daunt non specialists. Relation to finite geometries is recalled and the links to the 7stones of seven sphere, seven imaginary octonions units in out of the PlatoPlato cave reality applications are appointed . This way we are welcomed back to primary ideas of HeisenbergHeisenberg, WheelerWheeler and other distinguished fathers of quantum mechanics and quantum gravity foundations.Comment: 26 pages, 7 figure

    A Statistical Mechanical Problem in Schwarzschild Spacetime

    Full text link
    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.Comment: Corrected an equation misprint, added four references, and brief comments on the system's center of mass and the thermodynamic limi
    corecore